Request a Quotation
Home > Applications > Optical Spectroscopy > CS204*I-FMX-1SS

CS204I-FMX-1SS

  • Overview
  • Specifications
  • Drawings
  • Pictures
FMX-1SS Optical Stainless Steel Vacuum Shroud for the CS204*I-FMX-1SS
CS204SI-FMX-1SS Closed Cycle Cryostat System

The CS204I-FMX-1SS is our standard intermediate cooling power cryostat for optical and electrical measurements. This high performance system offers an all stainless steel constructed vacuum shroud along with a welded stainless steel instrumentation skirt. This system is capable of achieving vacuum levels of 10-7 Torr with an appropriate vacuum system. The nickel plated copper radiation shield provides low emissivity which is ideal for low temperature experiments.

The CS204I-FMX-1SS is powered by our DE-204 series closed cycle cryocooler. WIth twice the 4K cooling power of the DE-202 cryocooler, the base temperature of this system is much more forgiving of experimental and parasitic sources of heat load.

Download CS204I-FMX-1SS Data Sheet

Applications
  • Optical
  • Electro-optical
  • Raman
  • UV, VIS, IR
  • FTIR
  • Electroluminescence
  • Photoluminescence
  • Resistivity
  • Hall probe experiments
  • Diamond anvil cell
  • Deep-level transient spectroscopy (DLTS)
  • Thermal, electrical and magnetic susceptibility
  • Magneto-optical Kerr effect (MOKE)

Features
  • Cryogen free GM cryocooler
  • Welded stainless steel construction
  • Large, clear view optical windows (1.25 in.)
  • Large sample viewing angle for optical collection (F/# = 1)
  • Fully customizable
Typical Configuration
  • Cold head (DE-204AI)
  • Compressor (ARS-4HW)
  • 2 helium hoses
  • Stainless steel vacuum shroud with 5 window ports for optical and electrical experiments (FMX-1SS)
  • Nickel plated OFHC copper radiation shield
  • 2 high purity quartz windows
  • Instrumentation for temperature measurement and control:
    • 10 pin hermetic feedthrough
    • 36 ohm thermofoil heater
    • Silicon diode sensor curve matched to (± 0.5 K) for control
    • Calibrated silicon diode sensor (±12 mK) with 4 in. free length for accurate sample measurement
  • Wiring for electrical experiments:
    • 10 pin feedthrough
    • 4 copper wires
  • Sample holder for optical and electrical experiments
  • Temperature controller
Options and Upgrades
  • 4 K cold head (0.2 W @ 4.2 K)
  • 5.5 K cold head (3 W @ 10 K)
  • Turbo upgrade for faster cooldown times
  • 450 K high temperature interface
  • 800 K high temperature interface
  • Custom temperature sensor configuration (please contact our sales staff)
  • Custom wiring configurations (please contact our sales staff)
  • Window material upgrades (custom materials available)
  • Sample holder upgrades (custom sample holders available)

The ARS Advantage

4 K, 5.5 K, 10 K Fine-Tuned For Your Temperature Range
A Selection of ARS Manufactured Displex Cold Heads

The DE-204SI cold head is a precision machine carefully tuned to achieve temperatures below 4 K with 0.2 W of cooling power at 4.2 K.

The DE-204AIcold head is a rugged workhorse built with power and durability in mind, achieving temperatures below 9 K with 2 W of cooling power at 10 K.

The DE-204PI cold head is a hybrid of the the 4 K and 10 K philosophies, achieving a balance that exhibits the best of both worlds, with temperatures below 5.5 K and 3 W of cooling power at 10 K.

High Temperature Options
800K Interface Manufactured by ARS

Our high temperature interfaces use a unique combination of mechanical and thermodynamic properties to create a high temperature thermal disconnect between the cold head and the sample space. This allows for heating of the sample space far in excess of the maximum 355 K temperature of our cryocoolers.

450 K The Easy Way

Our 450 K interface is a simple semi-permanent addition to the cold tip that expands the upper sample temperature range by 95 K utilizing most of the same instrumentation as our standard cryocoolers.

800 K - Pouring on the Heat

Our specially designed 800 K interface goes beyond the standard techniques to provide a unique system that maximizes thermal conduction at low temperatures while minimizing heat transfer at high temperatures. Beyond the safe operating temperature of silicon diodes, the standard sensors are replaced with E-type thermocouples and platinum RTDs.

Wired the Right Way - Your Way
Thermally Anchored Sensor Wiring on the DE-202 Cold Tip

Our technicians painstakingly wrap each cold head for optimum thermal anchoring. We offer you the choice of a variety of wiring options, from our standard offerings of single strand copper and low noise coaxial wiring packages to any number of custom wiring configurations.

Typical instrumentation for temperature measurement and control include one 50 ohm thermofoil heater, one curve matched silicon diode for rough temperature control, and one free length calibrated diode for direct attachment to the sample or sample holder for accurate temperature measurement. Silicon diode sensors are favored heavily for most standard applications because of their low cost, durability, and stability, but we do offer a wide variety of other sensors for different applications such as Cernox sensors for high magnetic fields, E-type thermocouples for 4 K-800 K measurements, and platinum RTDs for accurate high temperature measurements.

Our wide selection of wiring and instrumentation is matched by an equally wide selection of temperature controllers from Cryocon, Lake Shore, and Scientific Instruments.

Specialized Optics For All Applications
DMX-1AL Optical Block

Window Materials for All Transmission Ranges

High purity quartz is the standard window material for most of our optical cryostats, but we have a wide variety of other window materials available, from near IR materials like CaF2 and KBr to far IR and terrahertz like Ultra High Molecular Wright Polyethylene and Picarin, to Kapton, Mylar and beryllium for x-ray experiments. If you don't see the window material you're looking for, please contact one of our sales representatives.

Optimized for Weak Signal Collection with Minimum Heat Load

The tiered optical access of the 1.25" clear view vacuum shroud window and radiation shield optical ports allows for a large cone of optical access (F/# = 1) and at the same time limits the area of exposure to 300 K thermal radiation.

Low Stress Window Mounts

Our window ports are designed to gently cradle the window material, creating a low stress seal that limits optical distortions.

A Sample Holder for Every Measurement
SHOE-1C Sample Holder for Optical and Electrical Experiments

Whether the measurement is optical or electrical in nature, the sample large or small, we have a sample holder for almost any measurement. The CS204*I-FMX-1SS can accept all but our largest sample holders. Like all of our cold fingers, the DE-204 has a 1/4-28 threaded hole on the cold tip to mount the sample holder. So even if you do not find what you need from our wide variety of sample holders there is always the option of attaching a custom sample holder.

Water Cooled Compressor For Your Convenience
The ARS-2HW Compressor

The water cooled ARS-4HW compressor that powers the DE-204 Series cold heads has many benefits that are amplified in small laboratory settings. The water cooling redirects heat energy that would otherwise be dumped into the lab by a large cooling fan. The lack of a large cooling fan also dramatically reduces the noise of these compressors (only 60 dBA). Additionaly with minimum air circulation, the air currents and dust are kept to a minimum. The high efficiency heat exchanger results in low water usage and saves space inside the compressor, giving it a small footprint. When water is not available our Coolpac™ remote recirculation system can send cooling water from up to 100 feet away.

Easy Do-It-Yourself Maintenance
DE-202 Disassembled for Service

The ARS DE-204 Closed Cycle Cryocooler operates on a pneumatically driven Gifford-McMahon refrigeration cycle that is both mechanically simple and robust.

12,000-Hour Maintenance Cycle

Over time the internal components of the cold head begin to wear. Eventually the performance of the cold head will decline and some time after 12,000 hours certain internal components need to be replaced or refurbished. With most closed cycle cryocoolers the only option is to send the cold head back to the manufacturer for service.

A Second Option

The simplicity of the ARS pneumatically driven cryocooler allows for another option. Our customers can purchase a service kit for our 10 K and 5.5 K cryocoolers that replaces all of the worn components. This service kit can be ordered ahead of time and reduce down time to a matter of hours instead of weeks.

FMX-1SS Specifications

Cooling Technology-
  DE-204 Closed Cycle Cryocooler
  Refrigeration Type Pneumatically Driven Gifford-McMahon Cycle
  Liquid Cryogen Usage None, Cryogen Free
Temperature*-
  DE-204AI < 9 K - 350 K
  DE-204SI < 4 K - 350 K
  DE-202PI < 5.5 K - 350 K
  With 800 K Interface (Base Temp + 2 K) - 800 K
  With 450 K Interface (Base Temp + 2 K) - 450 K
  Stability 0.1 K
  *Based on bare cold head with a closed radiation shield, and no additional sources of experimental or parasitic heat load.
Sample space-
  Diameter 36 mm (1.43 in)
  Height 39 mm (1.53 in)
  Sample Holder Attachment 1/4-28 screw
  Sample Holder View our Sample Holder Collection
Optical Access-
  Window Ports 4 - 90° Apart
  Diameter 41 mm (1.63 in)
  Clear view 32 mm (1.25 in)
  #/F 1
  Window Material View our Wide Selection of Window Materials
Temperature Instrumentation and Control (Standard)-
  Heater 1 - 50 ohm Thermofoil Heater Anchored on Cold Tip
  Control Sensor 1 - Curve Matched Silicon Diode
  Sample Sensor 1 - Calibrated Silicon Diode
  Custom Instrumentation Contact ARS for available Options
Instrumentation Access-
  Instrumentation Skirt Welded, Stainless Steel
  Pump out Port 1 - NW-25
  Instrumentation Ports 2
  Instrumentation Wiring Contact our sales staff for wiring options
Vacuum Shroud-
  Material Welded, Stainless Steel
  Length 338 mm (13.3 in)
  Diameter 80 mm (3.1 in) (at the sample space)
  Width 64 mm (2.5 in) (at the sample space)
Radiation Shield-
  Material OFHC Copper, Nickel Plated
  Attachment Threaded
  Optical Access 0, 2, or 4(customer specified)
Cryostat Footprint-
  Overall Length 562 mm (22.12 in)
  Motor Housing Diameter 114 mm (4.5 in)
  Rotational clearance Please Contact our Sales Staff

Cryocooler Specifications

Cryocooler Model DE-204AI DE-204A(T)I DE-204PI DE-204SI
  Frequency 60 Hz 50 Hz 60 Hz 50 Hz 60 Hz 50 Hz 60 Hz 50 Hz
    Base Temperature < 9 K < 9 K < 9 K < 9 K < 5.5 K < 5.5 K < 4 K < 4 K
    Cooling Capacity- 4.2 K - - - - - - 0.2 W 0.16 W
  10 K 2 W 1.6 W 2.7 W 2.2 W 3 W 2.4 W 4 W 3.2 W
  20 K 9 W 7.2 W 12 W 9.6 W 8 W 6.4 W 8 W 6.4 W
  77 K 17 W 14 W 23 W 18.4 W 14 W 11 W 14 W 11 W
    Radiation Shield Cooling Capacity 18 W 14 W 24 W 19 W 18 W 14 W 18 W 14 W
       (1st Stage Cooling Capacity at 77 K)                
    Maximum Cylinder Temperature 355 K 355 K 355 K 355 K
    Cooldown Time- 20 K 30 min 36 min 25 min 30 min 40 min 48 min 40 min 48 min
  Base Temperature 60 min 72 min 50 min 60 min 90 min 96 min 90 min 108 min
    Weight Expander 7.7 kg (17 lbs) 7.7 kg (16 lbs) 7.7 kg (16 lbs) 7.1 kg (16 lbs)
Compressor Model ARS-4HW ARS-4HW ARS-4HW ARS-4HW
    Standard Voltage Min 208 V 208 V 208 V 190 V 208 V 208 V 208 V 190 V
  Max 230 V 220 V 230 V 210 V 230 V 220 V 230 V 210 V
    Power Usage Singe Phase 3.6 kW 3.0 kW 3.6 kW 3.0 kW 3.6 kW 3.0 kW 3.6 kW 3.0 kW
    Dimensions: L 483 mm (19 in) 483 mm (19 in) 483 mm (19 in) 483 mm (19 in)
  W 434 mm (17.1 in) 434 mm (17.1 in) 434 mm (17.1 in) 434 mm (17.1 in)
  H 516 mm (20.3 in) 516 mm (20.3 in) 516 mm (20.3 in) 516 mm (20.3 in)
    Weight Compressor 73 kg (137 lbs) 73 kg (160 lbs) 73 kg (137 lbs) 73 kg (160 lbs)
    Typical Maintenance Cycle 12,000 hours 8,000 hours 12,000 hours 12,000 hours
FMX-1SS Vacuum Shroud Drawing

CS204*I-FMX-1SS
Stainless Steel Vacuum Shroud

CS204*I-FMX-1SS Sample Space Drawing

CS204*I-FMX-1SS
Sample Space

ARS-4HW Compressor Drawing

ARS-4HW
Compressor

Click on the images for full size.